Inorg. Chem. **²⁰⁰⁸**, *⁴⁷*, 5988-⁵⁹⁹¹

Inorganica

Homoleptic Cadmium and Mercury Compounds of Stanna-*closo***-dodecaborate**

Marius Kirchmann, Klaus Eichele, and Lars Wesemann*

Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, *D-72076 Tu¨bingen, Germany*

Received February 25, 2008

The reaction of stanna-*closo*-dodecaborate [SnB₁₁H₁₁]²⁻ (1) with CdBr₂ gave the tetrahedrally coordinated compound [Cd(SnB11H11)4] ⁶- (**2**). The same coordination mode can be found in [Hg(SnB11H11)4] ⁶- (**3**), which was obtained by reaction of stannaborate with Hq₂Cl₂. Both compounds were characterized by single crystal X-ray analysis and heteronuclear NMR techniques.

Introduction

Although many silicon complexes of the group 12 metals with the substituents SiMe₃, Si(SiMe₃)₃, Si^{*t*}Bu₃, and Si(SiH- P_2 ¹³ Bu₂)₃ are known,^{1–7} coordination compounds of the heavier congener tin with cadmium and mercury are rare.^{8,9} In 2002, the 2-fold coordinated compounds $[M(Me₂N(p-Tol)₃Sn)₂]$ (M $=$ Zn, Cd, Hg) have been reported as the first crystallographically characterized tin complexes of the group 12 metals.¹⁰ It was shown in recent years that stanna-*closo*dodecaborate can act as a versatile ligand with nucleophilic

- (2) Ro¨sch, L.; Mu¨ller, H. *Angew. Chem., Int. Ed. Engl.* **1976**, *15*, 620.
- (3) Ro¨sch, L.; Altnau, G. *Angew. Chem., Int. Ed. Engl.* **1979**, *18*, 60.
- (4) Arnold, J.; Tilley, T. D.; Rheingold, A. L.; Geib, S. J. *Inorg. Chem.* **1987**, *26*, 2106.
- (5) Klinkhammer, K. W.; Weidlein, J. *Z. Anorg. Allg. Chem.* **1996**, *622*, 1209.
- (6) Wiberg, N.; Amelunxen, K.; Lerner, H.-W.; Nöth, H.; Appel, A.; Knizek, J.; Polborn, K. *Z. Anorg. Allg. Chem.* **1997**, *623*, 1861.
- (7) Wiberg, N.; Niedermayer, W.; Lerner, H.-W.; Bolte, M. *Z. Anorg. Allg. Chem.* **2001**, *627*, 1043.
- (8) (a) Eaborn, C.; Thompson, A. R.; Walton, D. R. M. *Chem. Commun.* **1968**, 1051. (b) Bregadze, V. I.; Suleimanov, G. Z.; Ts. Kampel, V.; Petriashvili, M. V.; Mamedova, S. G.; Petrovskii, P. V.; Godovikov, N. N. *J. Organomet. Chem.* **1984**, *263*, 131. (c) des Tombe, F. J. A.; van der Kerk, G. J. M.; Creemers, H. M. J.; C; Noltes, J. G. *Chem. Commun.* **1966**, 914. (d) des Tombe, F. J. A.; van der Kerk, G. J. M.; Creemers, H. M. J. C.; Carey, N. A. D.; Noltes, J. G. *J. Organomet. Chem.* **1972**, *44*, 247. (e) des Tombe, F. J. A.; van der Kerk, G. J. M.; Noltes, J. G. *J. Organomet. Chem.* **1972**, *43*, 323.
- (9) Blaukat, U.; Neumann, W. P. *J. Organomet. Chem.* **1973**, *63*, 27.
- (10) Lutz, M.; Findeis, B.; Haukkai, M.; Graff, R.; Pakkanen, T. A.; Gade, L. H. *Chem.* $-Eur.$ J. 2002, 8, 3269.

Scheme 1. Synthesis of $[Et_3NH]_6[Cd(SnB_{11}H_{11})_4]$ (2)

properties in the coordination chemistry of various transition metals.¹¹ Nevertheless, homoleptic complexes of stannaborate are known for the group 10 metals Ni, Pd, and Pt in either square-planar or octahedral coordination modes.¹¹⁻¹³ With Au, the homoleptic square-planar pentaanion $[Au(SnB₁₁H₁₁)₄]⁵⁻$ has been reported.¹³ Herein, the first tetrahedrally coordinated tin complexes of the group 12 metals with stanna-*closo*-dodecaborate are presented.

Results and Discussion

Syntheses. The reaction product $[Et_3NH]_6[Cd(SnB_{11}H_{11})_4]$ (2) was obtained by reaction of $CdBr_2$ with $[Et_4N]_2[SnB_{11}H_{11}]$ in a 1:4 ratio in acetonitrile (Scheme 1). The completeness of the reaction was immediately indicated by one broad signal at -13.8 ppm in the ^{11}B NMR spectrum, since uncoordinated stannaborate exhibits three resonances at -6 , -11 , and -12 ppm with an intensity ratio of 1:5:5, while the boron atoms

- (12) Kirchmann, M.; Eichele, K.; Schappacher, F. M.; Pöttgen, R.; Wesemann, L. *Angew. Chem., Int. Ed. Engl.* **2008**, *47*, 963.
- (13) Marx, T.; Mosel, B.; Pantenburg, I.; Hagen, S.; Schulze, H.; Wesemann, L. *Chem.* $-Eur.$ J. 2003, 9, 4472.

^{*} To whom correspondence should be addressed. E-mail: lars.wesemann@ uni-tuebingen.de.

⁽¹⁾ Wiberg, E.; Stecher, O.; Andrascheck, H.-J.; Kreuzbichler, L.; Staude, E. *Angew. Chem., Int. Ed. Engl.* **1963**, *2*, 507.

⁽¹¹⁾ Gädt, T.; Wesemann, L. *Organometallics* **2007**, 26, 2474.

Cadmium and Mercury Compounds of Stanna-closo-dodecaborate

Scheme 2. Synthesis of $[Me₃NH]₆[Hg(SnB₁₁H₁₁)₄]$ (3)

of coordinated stannaborates have very similar chemical shifts. 11 Slow diffusion of diethylether into the acetonitrile solution yielded **2** as very large colorless crystals in 65% yield.

The synthesis of $[Me_3NH]_6[Hg(SnB_{11}H_{11})_4]$ (3) was accomplished by reaction of the $[Me₃NH]⁺$ salt of 1 with Hg_2Cl_2 in the ratio 4:1 in acetonitrile (Scheme 2). Again, the immediate formation of 3 was monitored by ¹¹B NMR. In addition, a gray precipitate of elemental mercury occurred, which was filtered from the reaction mixture to yield a clear, pale yellow solution. After slow diffusion of diethylether into this solution, large pale yellow crystals were isolated in 68% yield. It should be noted, that the same compound **3** can be obtained by combination of 1 with $HgCl₂$ and $HgBr₂$. Because the latter reactions yielded unidentified sideproducts, the reaction pathway with Hg_2Cl_2 was chosen.

Solid-State Structure. Compound **2** (Figure 1) crystallizes in the monoclinic space group *C*2/*c* with the cadmium atom on the C_2 axis. The tetrahedral coordination environment around the cadmium atom is slightly distorted with Sn-Cd-Sn angles between $98.840(11)^\circ$ and $119.108(6)^\circ$, which can be ascribed to packing effects. The Cd-Sn separations of 2.7462(2) and 2.7655(2) are somewhat longer than the Cd-Sn distance of 2.6758(1) \AA in [Cd(MeSi{SiMe₂- $N(p-Tol)$ }₃Sn)₂].¹⁰

The structure refinement of compound **3** (Figure 2) in space group $I\bar{4}2m$ revealed that the asymmetric unit consists of one mercury-coordinated stannaborate moiety with the mercury atom on the 4-fold inversion axis. The residual three heteroborates are generated by symmetry, and the mercury atom is surrounded by a slightly distorted tetrahedral

Figure 1. ORTEP plot of the anion of $[Et₃NH]₆[Cd(SnB₁₁H₁₁)₄]$ (2); H atoms and the cations have been omitted for clarity, ellipsoids at 30% probability. Interatomic distances $\vec{[A]}$ and angles $\vec{[C]}$ Cd-Sn1, 2.7462(2); Cd-Sn2, 2.7655(2); Sn1-Cd-Sn2, 105.344(6); Sn1-Cd-Sn2', 119.108(6); Sn1-Cd-Sn1′, 109.48(1); Sn2-Cd-Sn2′, 98.84(1).

Figure 2. ORTEP plot of the anion of $[Me_3NH]_6[Hg(SnB₁₁H₁₁)₄]$ (3); H atoms and the cations have been omitted for clarity, ellipsoids at 30% probability. Interatomic distances [Å] and angles [°] Hg-Sn, 2.7152(9); Sn1-Hg-Sn1′, 102.610(3); Sn1-Hg-Sn1", 124.29(4).

Figure 3. ¹¹⁹Sn{¹H} NMR spectrum of $[Me₃NH]₆[Hg(SnB₁₁H₁₁)₄]$ (3).

arrangement of stannaborate units with Sn-Hg-Sn angles of 102.610(18)° and 124.29(4)°. The Hg-Sn distance of 2.7152(9) Å is slightly elongated in comparison with the reported $Hg-Sn$ distance of 2.6495(2) Å in [Hg(MeSi{SiMe₂N(p-Tol)}₃Sn)₂].¹⁰ As in compound **2**, the distortion of the tetrahedral coordination environment can be ascribed to packing effects. It should be mentioned that two additional equivalents of [Me₃NH]Cl are included in the unit cell.

NMR Spectroscopy. To get more information on the solution behavior of the compounds, heteronuclear NMR studies have been carried out. In the ^{11}B { ^{1}H } NMR spectra of both compounds, the complete coordination of all four heteroborate units is indicated through broad signals at -13.8 ppm (2) and -14.4 ppm (3) .

These values are significantly shifted toward lower field, since most of the stannaborate transition metal compounds exhibit resonances at about -15 ppm.¹¹ More information is provided by the $^{119}Sn{1H} NMR$ spectrum of compound **2**, which displays a broad signal at -377 ppm. Additionally, the ^{119}Sn ^{{1}H} spectrum of 2 shows satellites with ¹ the ¹¹⁹Sn{¹H} spectrum of 2 shows satellites with ¹J(¹¹⁹Sn⁻¹¹⁷Sn) = 3500 Hz. The cadmium satellites are not resolved into ¹¹¹Cd and ¹¹³Cd cadmium satellites are not resolved into ¹¹¹Cd and ¹¹³Cd because of the large line width of the resonances and the similar magnetogyric ratios of both isotopes. A similar coupling pattern can be observed in the $^{119}Sn{^1H}$ NMR spectrum of **3** (Figure 3) which consists of a broad resonance at -320 ppm with 117 Sn and 199 Hg satellites. Thereby, the

Figure 4. ¹¹³Cd{¹H} NMR spectrum of $[Et_3NH]_6[Cd(SnB_{11}H_{11})_4]$ (2), referenced against CdMe2. The asterisk marks the transmitter frequency.

coupling constants ${}^{1}J({}^{199}Hg-{}^{119}Sn) = 13900$ Hz and ${}^{2}J$ - $(^{119}Sn-^{117}Sn) = 4330 Hz$ can be observed.

The ^{113}Cd ¹H} NMR spectrum of compound 2 exhibits one resonance at -42 ppm (referenced against CdMe₂), flanked by $119/117$ Sn tin satellites with the already observed ¹ $J(1^{19/117}Sn-113}Cd)$ coupling constant of 7400 Hz (Figure 4).
Because of the long *T_r* relaxation time of the ¹¹³Cd nucleus Because of the long T_1 relaxation time of the ¹¹³Cd nucleus in 2 , a small amount of $Mn(NO₃)₂$ was added for faster relaxation. The measurement of the 113Cd solid-state VACP-MAS spectrum located a resonance at -38 ppm, which is in good agreement with the solution spectrum.

Unfortunately, the proton relaxation $T_{1\rho}$ (∼1 ms) was too small for effective cross polarization, and therefore, the signal-to-noise ratio was very low. However, the presence of tin satellites with the same coupling constant as in solution was observed, and the absence of spinning sidebands indicates a small anisotropy of the ¹¹³Cd chemical shift. It has been reported in the literature that the full chemical shift range of 113 Cd runs from -740 to $+240$ ppm (CdMe₂ standard) with octahedral oxygen ligands being the most shielding and tetrahedral sulfur ligands the least.¹⁴ In contrast to the ¹⁹⁵Pt chemical shift of $[Pt(SnB₁₁H_{11)6]}$ ⁸⁻ (-7724 ppm),
which is situated in the highfield region of the ¹⁹⁵Pt shift which is situated in the highfield region of the ¹⁹⁵Pt shift range, the 113Cd chemical shift is located in the lowfield region of the 113 Cd chemical shift range.¹² This suggests that stannaborate acts as a weakly shielding ligand in compound **2**.

The high sensitivity of the ¹⁹⁹Hg NMR shift to the chemical environment about mercury(II) species, resulting in a large chemical shift range of about 4000 ppm, makes ¹⁹⁹Hg NMR spectroscopy a useful tool for the study of mercury complexes. ¹⁹⁹Hg{¹H} NMR measurements located the resonance of 3 at -640 ppm (HgMe₂ standard), which is situated in the middle of the 199Hg chemical shift range (Figure 5). This chemical shift agrees well with the chemical shift of K_2HgCN_4 (-502 ppm), whereas other tetrahalogene mercury compounds exhibit chemical shifts at much higher field $(K_2HgCl_4: -1331$ ppm, $K_2HgBr_4: -1921$ ppm, $K_2Hgl_4:$

Figure 5. ^{199}Hg ¹H} NMR spectrum of $[Me₃NH]_6[Hg(SnB₁₁H₁₁)₄]$ (3), referenced against HgMe2. The asterisk marks the transmitter frequency.

Table 1. Crystal and Structure Refinement Parameters for **2** and **3**

	$\mathbf{2}$	3.2 [Me ₃ NH]Cl
empirical formula	$C_{36}H_{140}B_{44}CdN_6Sn_4$	$C_{24}H_{124}B_{44}Cl_2HgN_8Sn_4$
formula weight [g/mol]	1720.34	1747.20
wayelength [Å]	0.71073	0.71073
temperature [K]	173	173
Theta range [°]	$5.67 - 25.35$	$5.72 - 25.34$
crystal system	monoclinic	tetragonal
space group	C2/c	$I\bar{4}2m$
Ζ	$\overline{4}$	$\overline{2}$
a [Å]	29.2531(16)	14.9235(16)
b [Å]	14.6392(5)	14.9235(16)
$c \text{ [A]}$	20.5977(12)	20.3832(16)
β [°]	108.500(4)	90.00
Volume $\rm{[\AA^3]}$	8365.0(7)	4539.6(8)
ρ_{calc} [g/cm ³]	1.366	1.278
μ [mm ⁻¹]	1.460	2.855
reflections collected	51225	25889
independent reflections	7577	2175
parameters/ restraints	430/6	101/0
absorption correction	none	numerical
min./max. transmission		0.5292/0.7128
final R indices $[I \geq 2\sigma]$		$R_1 = 0.0244$, $wR_2 = 0.0559$ $R_1 = 0.0538$, $wR_2 = 0.1382$
R indices all data		$R_1 = 0.0270$, $wR_2 = 0.0569$ $R_1 = 0.0570$, $wR_2 = 0.1396$
GoF on F^2 (all/obs. data)	1.129/1.220	1.208/1.208
largest diff. peak/hole	$0.696/-0.746$	$3.074/-1.130$

 -3451 ppm).¹⁵ The resonance is flanked by tin satellites with the already observed $1J(^{199}Hg^{-119}Sn)$ coupling of 13900 Hz
as well as a $1J(^{199}Hg^{-117}Sn)$ coupling of 13400 Hz as well as a $\frac{1}{J}(\frac{199}{Hg} - \frac{117}{Sn})$ coupling of 13400 Hz.

Conclusion

It can be concluded that stanna-*closo*-dodecaborate reacts readily with Cd and Hg electrophiles, establishing the first coordination compounds of this tin ligand and the group 12

⁽¹⁴⁾ Goodfellow, B. J.; Lima, M. J.; Ascenso, C.; Kennedy, M.; Sikkink,

R.; Rusnak, F.; Moura, I.; Moura, J. J. G. *Inorg. Chim. Acta* **1998**, *²⁷³*, 279. (15) Albright, M. J.; Schaaf, T. F.; Hovland, A. K.; Oliver, J. P. *J. Organomet. Chem.* **1983**, *259*, 37.

Cadmium and Mercury Compounds of Stanna-closo-dodecaborate

metals. Futhermore, the complexes **2** and **3** are the first crystallographically characterized group 12 compounds which are coordinated by such a high number of tin ligands.

Experimental Section

General Information. All manipulations were carried out under argon atmosphere in Schlenk glassware. Solvents were dried and purified by standard methods and were stored under argon. NMR spectra were recorded on a Bruker Avance II+ 500 NMR spectrometer equipped with a 5 mm TBI triple resonance probe head. The chemical shifts are reported in δ values in ppm relative to external BF_3 \cdot Et_2O (¹¹B), CdMe₂ (¹¹³Cd), SnMe₄ (¹¹⁹Sn) or $HgMe_2$ $(199Hg)$ using the chemical shift of the solvent ²H resonance frequency in combination with the unified frequency scale according to paragraph 3.6 of the IUPAC 2001 recommendations.¹⁶ The VACP-MAS NMR spectrum of **2** was measured on a Bruker DSX-200 spectrometer operating at 200.13 MHz (1H) and 44.39 MHz (113Cd). The powdered sample was spinning about the magic angle at 6 kHz. Elemental analyses were performed by the Institut für Anorganische Chemie, Universität Tübingen, using a Vario EL analyzer. $[Me₃NH]₂[SnB₁₁H₁₁]$ and $[Et₃NH]₂[SnB₁₁H₁₁]$ were synthesized using a modified protocol of the original work of Todd et al.17

Crystallography. X-ray data for compounds **2** and **3** (Table 1) were collected on an Stoe IPDS 2T diffractometer using Mo $K\alpha$ radiation and were corrected for Lorentz and polarization effects and absorption by air. The programs used in this work are Stoe's X -Area¹⁸ and the WinGX suite of programs¹⁹ including SHELXS²⁰

- (19) Farrugia, L. J. *J. Appl. Crystallogr.* **1999**, *32*, 837.
- (20) Sheldrick, G. M. *SHELXS-97*; University of Göttingen: Göttingen, Germany, 1997.

and $SHELXL²¹$ for structure solution and refinement, respectively. Numerical absorption correction based on crystal-shape optimization was applied for 3 with Stoe's X-Red and X-Shape.^{22,23}

 $[Et₃NH]₆[Cd(SnB₁₁H₁₁)₄]$ (2). A 453 mg quantity of (1 mmol) $[Et₃NH]₂[SnB₁₁H₁₁]$ was dissolved in 10 mL of acetonitrile and 68 mg of (0.25 mmol) CdBr₂ was added. Large colorless block shaped crystals of **2** (279 mg, 65% yield) can be grown by slow diffusion of Et₂O into the acetonitrile solution. ¹¹B{¹H} NMR (160.5 MHz, CD₃CN): -13.8 (11B). ¹¹³Cd{¹H} NMR (110.99 MHz, CD₃CN): -42 [¹J(^{119/117}Sn $-$ ¹¹³Cd) = 7400 Hz]. ¹¹⁹Sn{¹H} NMR (186.5 MHz, CD₃CN): -377 $[^1J(^{119}Sn-^{113/111}Cd) = 7400$ Hz, $^2J(^{119}Sn-^{117}Sn)$ $=$ 3500 Hz]. Elemental analysis calcd (%) for C₃₆H₁₄₀B₄₄CdN₆Sn₄: C, 25.13; H, 8.20; N, 4.88; found: C, 24.99; H, 7.53; N, 4.78.

 $[Me₃NH]₆[Hg(SnB₁₁H₁₁)₄]$ (3). A 369 mg quantity of (1 mmol) $[Me₃NH]₂[SnB₁₁H₁₁]$ was dissolved in 10 mL of acetonitrile and 118 mg of (0.25 mmol) Hg_2Cl_2 was added. The solution was filtered to remove the gray precipitate and slow diffusion of $Et₂O$ into the acetonitrile solution yielded 318 mg (68%) large colorless crystals of $3 \cdot 3CH_3CN \cdot 2[Me_3NH]Cl$. ¹¹B{¹H} NMR (160.5 MHz, CD₃CN): -14.4 (11B). ¹¹⁹Sn{¹H} NMR (186.5 MHz, CD₃CN): -320
[¹J(¹⁹⁹Hg-¹¹⁹Sn) = 13900 Hz, ²J(¹¹⁹Sn-¹¹⁷Sn) = 4330 Hz]. ¹⁹⁹Hg^{{1}H} NMR (89.52 MHz, CD₃CN): -630 [¹J(¹⁹⁹Hg-¹¹⁹Sn) $=$ 13900 Hz, ¹*J*(¹⁹⁹Hg⁻¹¹⁷Sn) = 13400 Hz]. Elemental analysis calcd (%) for C₃₀H₁₃₃B₄₄Cl₂HgN₁₁Sn₄: C, 19.26; H, 7.17; N, 8.24; found: C, 19.27; H, 7.33; N, 8.54.

Supporting Information Available: Crystallographic data for compound **2** and **3** (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

IC800357Z

(23) *X-SHAPE 2.05*; Stoe & Cie. GmbH: Darmstadt, Germany, 2004.

⁽¹⁶⁾ Harris, R. K.; Becker, E. D.; Cabral de Menezes, S.; Goodfellow, R.; Granger, P. *Pure Appl. Chem.* **2001**, *73*, 1795.

⁽¹⁷⁾ Chapman, R. W.; Chester, J. G.; Folting, K.; Streib, W. E.; Todd, L. J. *Inorg. Chem.* **1992**, *31*, 979.

⁽¹⁸⁾ *X-AREA 1.26*; Stoe & Cie. GmbH: Darmstadt, Germany, 2004.

⁽²¹⁾ Sheldrick, G. M. *SHELXL-97*; University of Göttingen: Göttingen, Germany, 1997.

⁽²²⁾ *X-RED 1.26*; Stoe & Cie. GmbH: Darmstadt, Germany, 2004.